A Brilliant Demonstration of Magnets & the Promise of Levitating Trains (1975)

For a brief time in the 1980s, it seemed like trains pow­ered by maglev — mag­net­ic lev­i­ta­tion — might just solve trans­porta­tion prob­lems every­where, maybe even replac­ing air trav­el, there­by elim­i­nat­ing one of the most vex­ing sources of car­bon emis­sions. Maglev trains don’t use fuel; they don’t require very much pow­er by com­par­i­son with oth­er sources of high speed trav­el; they don’t pro­duce emis­sions; they’re qui­et, require less main­te­nance than oth­er trains, and can trav­el at speeds of 300 mph and more. In fact, the fastest maglev train to date, unveiled this past sum­mer in Qing­dao, Chi­na, can reach speeds of up to 373 miles per hour (600 kph).

So, why isn’t the plan­et criss-crossed by maglev trains? asks Dave Hall at The Guardian, cit­ing the fact that the first maglev train was launched in the UK in 1984, after which Ger­many, Japan, and Chi­na fol­lowed suit. It seems to come down, as such things do, to “polit­i­cal will.” With­out sig­nif­i­cant com­mit­ment from gov­ern­ments to reshape the trans­porta­tion infra­struc­ture of their coun­tries, maglev trains remain a dream, the mono­rails of the future that nev­er mate­ri­al­ize. Even in Chi­na, where gov­ern­ment man­date can insti­tute mass changes at will, the devel­op­ment of maglev trains has not meant their deploy­ment. The new train could, the­o­ret­i­cal­ly, fer­ry trav­el­ers between Shang­hai to Bei­jing in 2.5 hours… if it had the track.

Per­haps some­day the world will catch up with maglev trains, an idea over a cen­tu­ry old. (The first patents for maglev tech­nol­o­gy were filed by a French-born Amer­i­can engi­neer named Emile Bachelet in the 1910s.) Until then, the rest of us can edu­cate our­selves on the tech­nol­o­gy of trains that use mag­net­ic lev­i­ta­tion with the 1975 video les­son above from British engi­neer and pro­fes­sor Eric Laith­waite (Impe­r­i­al Col­lege Lon­don), who “decon­structs the fas­ci­nat­ing physics at work behind his plans for a maglev trains, which he first mod­elled in the 1940s and per­fect­ed in the 1970s,” notes Aeon. “Well-regard­ed in his time as both a lec­tur­er and an engi­neer, Laith­waite presents a series of demon­stra­tions that build, step by step, until he final­ly unveils a small maglev train mod­el.”

Laithwaite’s small-scale demon­stra­tion would even­tu­al­ly cul­mi­nate in the first com­mer­cial maglev train almost a decade lat­er at Birm­ing­ham Air­port. Here, he begins where sci­ence begins, with an admis­sion of igno­rance. “Per­ma­nent mag­nets are dif­fi­cult things to under­stand,” he says. “In fact, if we’re absolute­ly hon­est with our­selves, we don’t under­stand them.” The good pro­fes­sor then briskly moves on to demon­strate what he does know — enough to build a lev­i­tat­ing train. Learn much more about the his­to­ry and tech­nol­o­gy of maglev trains at How Stuff Works, and keep your eyes on the North­east Maglev project, a devel­op­ing Super­con­duct­ing Maglev train that promis­es trav­el between New York and Wash­ing­ton, DC in one hour flat.

via Aeon

Relat­ed Con­tent: 

The Fly­ing Train: A 1902 Film Cap­tures a Futur­is­tic Ride on a Sus­pend­ed Rail­way in Ger­many

In 1900, a Pho­tog­ra­ph­er Had to Cre­ate an Enor­mous 1,400-Pound Cam­era to Take a Pic­ture of an Entire Train

Free Online Physics Cours­es 

Josh Jones is a writer and musi­cian based in Durham, NC. Fol­low him at @jdmagness


by | Permalink | Comments (0) |

Sup­port Open Cul­ture

We’re hop­ing to rely on our loy­al read­ers rather than errat­ic ads. To sup­port Open Cul­ture’s edu­ca­tion­al mis­sion, please con­sid­er mak­ing a dona­tion. We accept Pay­Pal, Ven­mo (@openculture), Patre­on and Cryp­to! Please find all options here. We thank you!


Leave a Reply

Quantcast