A few months before Philaelphia’s Mütter Museum, exercising now familiar COVID-19 precautions, closed its doors to the public, it co-sponsored a parade to honor the victims to the previous century’s Spanish Flu pandemic, as well as “those who keep us safe today.”
Another temporary exhibition, Going Viral: Infection Through the Ages, opened in November, and now seems even stronger proof that the museum, whose 19th-century display cabinets are housed in the historic College of Physicians, is as concerned with the future as it is with the past.
For now, all tours must be undertaken virtually.
Above, curator Anna Dhody, a physical and forensic anthropologist and Director of the Mütter Research Institute, gives a brief introduction to some of the best known artifacts in the permanent collection.
The museum’s many antique skulls and medical oddities may invite comparisons to a ghoulish sideshow attraction, an impression Dhody corrects with her warm, matter-of-fact delivery and respectful acknowledgment of the humans whose stories have been preserved along with their remains:
Mary Ashberry, an achondroplastic dwarf, died from complications of a Cesarean section, as doctors who had yet to learn the importance of sterilizing instruments and washing hands, attempted to help her deliver a baby who proved too big for her pelvis. (The baby’s head was crushed as well. Its skull is displayed next to its mother’s skeleton.)
Madame Dimanche is represented by a wax model of her face, instantly recognizable due to the 10-inch cutaneous horn that began growing from her forehead when she was in her 70s. (It was eventually removed in an early example of successful plastic surgery.)
Albert Einstein and the conjoined twins Chang and Eng Bunker are among the household names gracing the museum’s collection.
One of the most recent additions is the skeleton of artist and disability awareness advocate Carol Orzel, who educated the public and incoming University of Pennsylvania medical students about fibrodysplasia ossificans progressiva (FOP), a rare disorder that turned her muscle and connective tissue to bone. She told her physician, Frederick Kaplan, below, that she wanted her skeleton to go to the Mütter, to join that of fellow FOP sufferer, Harry Eastlack… provided some of her prized costume jewelry could be displayed alongside. It is.
Get better acquainted with the Mütter Museum’s collection through this playlist.
The exhibit Spit Spreads Death is currently slated to stay up through 2024. While waiting to visit in person, you can watch an animation of the Spanish flu’s spread, and explore an interactive map showing the demographics of the infection.
At the age of twelve, he followed his own line of reasoning to find a proof of the Pythagorean Theorem. At thirteen he read Kant, just for the fun of it. And before he was fifteen he had taught himself differential and integral calculus.
But while the young Einstein was engrossed in intellectual pursuits, he didn’t much care for school. He hated rote learning and despised authoritarian schoolmasters. His sense of intellectual superiority was resented by his teachers.
At the Gymnasium a teacher once said to him that he, the teacher, would be much happier if the boy were not in his class. Einstein replied that he had done nothing wrong. The teacher answered, “Yes, that is true. But you sit there in the back row and smile, and that violates the feeling of respect that a teacher needs from his class.”
The same teacher famously said that Einstein “would never get anywhere in life.”
What bothered Einstein most about the Luitpold was its oppressive atmosphere. His sister Maja would later write:
“The military tone of the school, the systematic training in the worship of authority that was supposed to accustom pupils at an early age to military discipline, was also particularly unpleasant for the boy. He contemplated with dread that not-too-distant moment when he will have to don a soldier’s uniform in order to fulfill his military obligations.”
When he was sixteen, Einstein’s parents moved to Italy to pursue a business venture. They told him to stay behind and finish school. But Einstein was desperate to join them in Italy before his seventeenth birthday. “According to the German citizenship laws,” Maja explained, “a male citizen must not emigrate after his completed sixteenth year; otherwise, if he fails to report for military service, he is declared a deserter.”
So Einstein found a way to get a doctor’s permission to withdraw from the school on the pretext of “mental exhaustion,” and fled to Italy without a diploma. Years later, in 1944, during the final days of World War II, the Luitpold Gymnasium was obliterated by Allied bombing. So we don’t have a record of Einstein’s grades there. But there is record of a principal at the school looking up Einstein’s grades in 1929 to fact check a press report that Einstein had been a very bad student. Walter Sullivan writes about it in a 1984 piece in The New York Times:
With 1 as the highest grade and 6 the lowest, the principal reported, Einstein’s marks in Greek, Latin and mathematics oscillated between 1 and 2 until, toward the end, he invariably scored 1 in math.
After he dropped out, Einstein’s family enlisted a well-connected friend to persuade the Swiss Federal Institute of Technology, or ETH, to let him take the entrance exam, even though he was only sixteen years old and had not graduated from high school. He scored brilliantly in physics and math, but poorly in other areas. The director of the ETH suggested he finish preparatory school in the town of Aarau, in the Swiss canton of Aargau. A diploma from the cantonal school would guarantee Einstein admission to the ETH.
At Aarau, Einstein was pleasantly surprised to find a liberal atmosphere in which independent thought was encouraged. “When compared to six years’ schooling at a German authoritarian gymnasium,” he later said, “it made me clearly realize how much superior an education based on free action and personal responsibility is to one relying on outward authority.”
In Einstein’s first semester at Aarau, the school still used the old method of scoring from 1 to 6, with 1 as the highest grade. In the second semester the system was reversed, with 6 becoming the highest grade. Barry R. Parker talks about Einstein’s first-semester grades in his book, Einstein: The Passions of a Scientist:
His grades over the first few months were: German, 2–3; French, 3–4; history, 1–2; mathematics, 1; physics, 1–2; natural history, 2–3; chemistry, 2–3; drawing, 2–3; and violin, 1. (The range is 1 to 6, with 1 being the highest.) Although none of the grades, with the exception of French, were considered poor, some of them were only average.
The school headmaster, Jost Winteler, who had welcomed Einstein into his home as a boarder and had become something of a surrogate father to him during his time at Aarau, was concerned that a young man as obviously brilliant as Albert was receiving average grades in so many courses. At Christmas in 1895, he mailed a report card to Einstein’s parents. Hermann Einstein replied with warm thanks, but said he was not too worried. As Parker writes, Einstein’s father said he was used to seeing a few “not-so-good grades along with very good ones.”
In the next semester Einstein’s grades improved, but were still mixed. As Toby Hendy of the Youtube channel Tibees shows in the video above, Einstein’s final grades were excellent in math and physics, but closer to average in other areas.
Einstein’s uneven academic performance continued at the ETH, as Hendy shows. By the third year his relationship with the head of the physics department, Heinrich Weber, began to deteriorate. Weber was offended by the young man’s arrogance. “You’re a clever boy, Einstein,” said Weber. “An extremely clever boy. But you have one great fault. You’ll never allow yourself to be told anything.” Einstein was particularly frustrated that Weber refused to teach the groundbreaking electromagnetic theory of James Clerk Maxwell. He began spending less time in the classroom and more time reading up on current physics at home and in the cafes of Zurich.
Einstein increasingly focused his attention on physics, and neglected mathematics. He came to regret this. “It was not clear to me as a student,” he later said, “that a more profound knowledge of the basic principles of physics was tied up with the most intricate mathematical methods.”
Einstein’s classmate Marcel Grossmann helped him by sharing his notes from the math lectures Einstein had skipped. When Einstein graduated, his conflict with Weber cost him the teaching job he had expected to receive. Grossmann eventually came to Einstein’s rescue again, urging his father to help him secure a well-paid job as a clerk in the Swiss patent office. Many years later, when Grossmann died, Einstein wrote a letter to his widow that conveyed not only his sadness at an old friend’s death, but also his bittersweet memories of life as a college student:
“Our days together come back to me. He a model student; I untidy and a daydreamer. He on excellent terms with the teachers and grasping everything easily; I aloof and discontented, not very popular. But we were good friends and our conversations over iced coffee at the Metropol every few weeks belong among my nicest memories.”
A heads up: Dyson has “created 44 engineering and science activities for children to try out while at home during the coronavirus pandemic, from making a balloon-powered car to building a bridge from spaghetti,” writes the Dezeen website. They go on to add: “Comprised of 22 science tasks and 22 engineering activities, the Challenge Cards can be completed by children using common household items such as eggs, string and balloons.” You can also find a related playlist of videos on YouTube, one of which appears above.
If you would like to support the mission of Open Culture, consider making a donation to our site. It’s hard to rely 100% on ads, and your contributions will help us continue providing the best free cultural and educational materials to learners everywhere. You can contribute through PayPal, Patreon, and Venmo (@openculture). Thanks!
Disease modeling as a science has come into its own lately, for heartbreakingly obvious reasons. What may not be so obvious to those of us who aren’t scientists is just how critical data can be in changing the course of events in an outbreak. Virus outbreaks may be “acts of God” or acts of unregulated black markets and agribusinesses, but in either case, statistical models can show, concretely, how collective human activity can save lives—and show what happens when people don’t act together.
For example, epidemiologists and biostatisticians have shown in detail how social distancing led to a “decline in the proportion of influenza deaths,” one study concludes, during the 1918 flu pandemic. The same researchers also saw evidence in their models that showed “public risk perception could be lowered” when these practices worked effectively, leading people think they could resume business as usual. But “less social distancing could eventually induce another epidemic wave.”
To say that it’s a challenge to stay inside and wait out COVID-19 indefinitely may be a gross understatement, but hunkering down may save our lives. No one can say what will happen, but as for how and why it happens, well, “that is math, not prophecy,” writes Harry Stevens at The Washington Post. “The virus can be slowed,” if people continue “avoiding public spaces and generally limiting their movement.” Let’s take a look at how with the model above. We must note that the video above does not model COVID-19 specifically, but a offers a detailed look at how a hypothetical epidemic spreads.
Created by YouTuber 3Blue1Brown, the modeling in the top video draws from a variety of sources, including Stevens’ interactive models of a hypothetical disease he calls “simulitis.” Another simulator whose work contributed to the video, Kevin Simler, has also explained the spread of disease with interactive models that enable us to visualize difficult-to-grasp epidemiological concepts, since “exponential growth is really, really hard for our human brains to understand” in the abstract, says YouTube physics explainer Minute Physics in the short, animated video above.
Deaths multiply faster than the media can report, and whatever totals we come across are hopelessly outdated by the time we read them, an emotional and intellectual barrage. So how can we know if we’re “winning or losing” (to use the not-particularly-helpful war metaphor) the COVID-19 fight? Here too, the current data on its previous progress in other countries can help plot the course of the disease in the U.S. and elsewhere, and allow scientists and policy-makers to make reasonable inferences about how to stop exponential growth.
But none of these models show the kind of granularity that doctors, nurses, and public health professionals must deal with in a real pandemic. “Simulitis is not covid-19, and these simulations vastly oversimplify the complexity of real life,” Stevens admits. Super-complicating risk factors like age, race, disability, and access to insurance and resources aren’t represented here. And there may be no way to model whatever the government is doing.
But the data models show us what has worked and what hasn’t, both in the past and in the recent present, and they have become very accessible thanks to the internet (and open source journals on platforms like PLOS). For a longer, in-depth explanation of the current pandemic’s exponential spread, see the lecture by epidemiologist Nicholas Jewell above from the Mathematical Sciences Research Institute (MSRI).
It may not sway people who actively ignore math, but disease modeling can guide the merely uninformed to a much better understanding of what’s happening, and better decisions about how to respond under the circumstances.
After winning the Nobel Prize, physicist Max Planck “went around Germany giving the same standard lecture on the new quantum mechanics. Over time, his chauffeur memorized the lecture and said, ‘Would you mind, Professor Planck, because it’s so boring to stay in our routine, if I gave the lecture in Munich and you just sat in front wearing my chauffeur’s hat?’ Planck said, ‘Why not?’ And the chauffeur got up and gave this long lecture on quantum mechanics. After which a physics professor stood up and asked a perfectly ghastly question. The speaker said, ‘Well, I’m surprised that in an advanced city like Munich I get such an elementary question. I’m going to ask my chauffeur to reply.’ ”
That this intellectual switcheroo never actually happened didn’t stop Charlie Munger from using it as an opener for a commencement speech to USC’s Law School. But when a successful billionaire investor finds value even in an admittedly “apocryphal story,” most of us will find value in it as well. It illustrates, according to the Freedom in Thought video above, the difference between “two kinds of knowledge: the deep knowledge that Max had, and the shallow knowledge that the chauffeur had.” Both forms of knowledge have their advantages, especially since none of us have lifetime enough to understand everything deeply. But we get in trouble when we can’t tell them apart: “We risk fooling ourselves into thinking we actually understand or know something when we don’t. Even worse, we risk taking action on misinformation or misunderstanding.”
Even if you put little stock into a made-up anecdote about one Nobel-winning physicist, surely you’ll believe the documented words of another. Richard Feynman once articulated a first principle of knowing as follows: “You must not fool yourself, and you are the easiest person to fool.” This principle underlies a practical process of learning that consists of four steps. First, “explain the topic out loud to a peer who is unfamiliar with the topic. Meet them at their level of understanding and use the simplest language you can.” Second, “identify any gaps in your own understanding, or points where you feel that you can’t explain an idea simply.” Third, “go back to the source material and study up on your weak points until you can use simple language to explain it.” Finally, “repeat the three steps above until you’ve mastered the topic.”
We’ve featured the so-called “Feynman technique” once or twice before here on Open Culture, but its emphasis on simplicity and concision always bears repeating — in, of course, as simple and concise a manner as possible each time. Its origins lie in not just Fenyman’s first principle of knowledge but his intellectual habits. This video’s narrator cites James Gleick’s biography Genius, which tells of how “Richard would create a journal for the things he did not know. His discipline in challenging his own understanding made him a genius and a brilliant scientist.” Like all of us, Feynman was ignorant all his life of vastly more subjects than he had mastered. But unlike many of us, his desire to know burned so furiously that it propelled him into perpetual confrontation with his own ignorance. We can’t learn what we want to know, after all, unless we acknowledge how much we don’t know.
Based in Seoul, Colin Marshall writes and broadcasts on cities, language, and culture. His projects include the book The Stateless City: a Walk through 21st-Century Los Angeles and the video series The City in Cinema. Follow him on Twitter at @colinmarshall or on Facebook.
When people say things like “the science is settled” or “the science has changed,” researchers tend to grind their teeth. Science can come to a broad consensus, as in the case of the coronavirus or climate change, but it isn’t ever perfectly settled as a bloc on any question. We proceed in scientific knowledge not by attaining perfect knowledge but, as Isaac Asimov once wrote, by being less wrong than those who came before.
And scientists advance in scientific publishing, as Aeon writes, not with certainty, but with “excitement, baby steps and reams of rejections.” As we see in the short film above, The Researcher’s Article, by French filmmaker Charlotte Arene, getting one’s research published can be “a patience-testing exercise in rejection, rewriting and waiting,” demonstrated here by the travails of physicists Frédéric Restagno and Julien Bobroff of the University of Paris-Saclay.
Even before submitting their findings, the scientists must carefully fit their work into the traditional form known as the “letter,” a document of four pages or fewer that condenses years of research into strictly succinct paragraphs, graphs, and references. The “letter” is “one of the most popular formats of articles in physics,” say the physicists, noting the major Nobel prize-winning discoveries to appear as letters in recent years, including the Higgs’ Boson publication that won in 2013, coming in at only two pages long.
Summing up “a massive amount of data,” short scientific articles then go on to prove themselves to their respective fields through a refereeing process in which three anonymous scientists read the work and recommend publication, revision, or rejection. This process can go several rounds and take several months. One must be persistent: Restagno and Bobroff were rejected from several journals before finally getting an acceptance.
After this significant investment of time and effort, the authors may have a readership of maybe twenty people. But crowd size is not the point, they say, “because research is made up of all these small discoveries,” contributing to a larger picture, informing and correcting each other, and going about the humble, painstaking business of trying to be less wrong than their predecessors, while still building on the best insights of hundreds of years of scientific publishing.
If you keep up with climate change news, you see a lot of predictions of what the world will look like twenty years from now, fifty years from now, a century from now. Some of these projections of the state of the land, the shape of continents, and the levels of the sea are more dramatic than others, and in any case they vary so much that one never knows which ones to credit. But of equal importance to foreseeing what Earth will look like in the future is not forgetting what it looks like now — or so holds the premise of the Earth Archive, a scientific effort to “scan the entire surface of the Earth before it’s too late.”
This ambitious project has three goals: to “create a baseline record of the earth as it is today to more effectively mitigate the climate crisis,” to “build a virtual, open-source planet accessible to all scientists so we can better understand our world,” and to “preserve a record of the Earth for our grandchildren’s grandchildren so they can study & recreate our lost heritage.”
All three depend on the creation of a detailed 3D model of the globe — but “globe” is the wrong word, bringing to mind as it does a sphere covered with flat images of land and sea.
Using lidar (short for Light Detection & Ranging), a technology that “involves shooting a dense grid of infrared beams from an airplane towards the ground,” the Earth Archive aims to create not an image but “a dense three-dimensional cloud of points” capturing the whole planet. At the top of the post, you can see a TED Talk on the Earth Archive’s origin, purpose, and potential by archaeologist and anthropology professor Chris Fisher, the project’s founder and director. “Fisher had used lidar to survey the ancient Purépecha settlement of Angamuco, in Mexico’s Michoacán state,” writes Atlas Obscura’s Isaac Schultz. “In the course of that work, he saw human-caused changes to the landscape, and decided to broaden his scope.”
Now, Fisher and Earth Archive co-director Steve Leisz want to create “a comprehensive archive of lidar scans” to “fuel an immense dataset of the Earth’s surface, in three dimensions.” This comes with certain obstacles, not the least the price tag: a scan of the Amazon rainforest would take six years and cost $15 million. “The next step,” writes Schultz, “could be to use some future technology that puts lidar in orbit and makes covering large areas easier.” Disinclined to wait around for the development of such a technology while forests burn and coastlines erode, Fisher and Leisz are taking their first steps — and taking donations — right now. On the off chance that humans of centuries ahead develop the ability to recreate the planet as we know it today, it’s the Earth Archive’s data they’ll rely on to do it.
Based in Seoul, Colin Marshall writes and broadcasts on cities, language, and culture. His projects include the book The Stateless City: a Walk through 21st-Century Los Angeles and the video series The City in Cinema. Follow him on Twitter at @colinmarshall or on Facebook.
Broadly speaking, the “Space Race” of the 1950s and 60s involved two major players, the United States and the Soviet Union. But there were also minor players: take, for instance, the Zambian Space Program, founded and administered by just one man. A Time magazine article published in November 1964 — when the Republic of Zambia was one week old — described Edward Mukuka Nkoloso as a “grade-school science teacher and the director of Zambia’s National Academy of Science, Space Research and Philosophy.” Nkoloso had a plan “to beat the U.S. and the Soviet Union to the moon. Already Nkoloso is training twelve Zambian astronauts, including a 16-year-old girl, by spinning them around a tree in an oil drum and teaching them to walk on their hands, ‘the only way humans can walk on the moon.’ ”
Nkoloso and his Quixotic space program seem to have drawn as much attention as the subject of the article, Zambia’s first president Kenneth David Kaunda. Namwali Serpell tells Nkoloso’s story in a piece for The New Yorker: not just the conception and failure of his entry into the Space Race (“the program suffered from a lack of funds,” Serpell writes, “for which Nkoloso blamed ‘those imperialist neocolonialists’ who were, he insisted, ‘scared of Zambia’s space knowledge‘”), but also his background as “a freedom fighter in Kaunda’s United National Independence Party.”
Born in 1919 in then-Northern Rhodesia, Nkoloso received a missionary education, got drafted into World War II by the British, took an interest in science during his service, and came home to illegally found his own school. There followed periods as a salesman, a “political agitator,” and a messianic liberator figure, ending with his capture and imprisonment by colonial authorities.
How on Earth could this all have convinced Nkoloso to aim for Mars? Some assume he experienced a psychological break due to torture endured at the hands of Northern Rhodesian police. Some see his ostensible interplanetary ambitions as a cover for the training he was giving his “Afronauts” for guerrilla-style direct political action. Some describe him as a kind of national court jester: Serpell quotes from the memoir of San Francisco Chronicle columnist Arthur Hoppe, author of a series of contemporary pieces on the Zambian Space Program, who “believed it was the Africans who were satirizing our multi-billion-dollar space race against the Russians.” As Serpell points out, “Zambian irony is very subtle,” and as a satirist Nkoloso had “the ironic dédoublement — the ability to split oneself — that Charles Baudelaire saw in the man who trips in the street and is already laughing at himself as he falls.”
Whatever Nkoloso’s purposes, the Zambian Space Program has attracted new attention in the years since documentary footage of its facilities and training procedures found its way to Youtube. This fascinatingly eccentric chapter in the history of man’s heavenward aspirations has become the subject of short documentaries like the one from SideNote at the top of the post, as well as the subject of artworks like the short film Afronauts above. Nkoloso died more than 30 years ago, but he now lives on as an icon of Afrofuturism, a movement (previously featured here on Open Culture) at what Serpell calls “the nexus of black art and technoculture.” No figure embodies Afrofuturism quite so thoroughly as Sun Ra, who transformed himself from the Alabama-born Herman Poole Blount into a peace-preaching alien from Saturn. Though Nkoloso never seems to have met his American contemporary, such an encounter would surely, as a subject for Afrofuturistic art, be truly out of this world.
Based in Seoul, Colin Marshall writes and broadcasts on cities, language, and culture. His projects include the book The Stateless City: a Walk through 21st-Century Los Angeles and the video series The City in Cinema. Follow him on Twitter at @colinmarshall or on Facebook.
We're hoping to rely on loyal readers, rather than erratic ads. Please click the Donate button and support Open Culture. You can use Paypal, Venmo, Patreon, even Crypto! We thank you!
Open Culture scours the web for the best educational media. We find the free courses and audio books you need, the language lessons & educational videos you want, and plenty of enlightenment in between.